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Abstract. Controlled Random Search (CRS) is a simple population based algorithm which despite
its attractiveness for practical use, has never been very popular among researchers on Global Op-
timization due to the difficulties in analysing the algorithm. In this paper, a framework to study
the behaviour of algorithms in general is presented and embedded into the context of our view
on questions in Global Optimization. By using as a reference a theoretical ideal algorithm called
N-points Pure Adaptive Search (NPAS) some new analytical results provide bounds on speed of
convergence and the Success Rate of CRS in the limit once it has settled down into simple behaviour.
To relate the performance of the algorithm to characteristics of functions to be optimized, constructed
simple test functions, called extreme cases, are used.

Key words: stochastic global optimization, random methods, adaptive random search, speed of
convergence.

1. Introduction, questions in GO

Research on Global Optimization (GO) mainly concerns the investigation of prop-
erties of algorithms and their interrelation with (mathematical structure of) Global
Optimization problems. The final aim of GO research is to get a better under-
standing of which methods are best suited to be used on which type of practical
optimization problems. Two aspects can be distinguished and classified further in
research on GO:

(a) the methods

One can roughly distinguish two major approaches (Hendrix, 1998):

(1) Deterministic methods which aim at guarantee to approach the global optimum
and therefore require a certain mathematical structure.

(2) Stochastic methods which are based on the random generation of feasible trial
points and nonlinear local optimization procedures.

A profound discussion and classification of methods can be found in (Törn and
Zilinskas, 1989). In this paper, focus is on a stochastic optimization procedure
called Controlled Random Search.
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(b) the structure of the optimization problem

Roughly two types of problems are discussed in literature on Global Optimization:
The black box case, also called oracle case, in which no structure on the problem
is assumed or available and the structured problems. In ‘The Handbook of Global
Optimization’ (Horst and Pardalos, 1995), most chapters are classified with respect
to a mathematical structure, assumed for the problem to be solved. Given a partic-
ular optimization problem, confronted with the question which method, or which
particular algorithm is most appropriate to solve it, this distinction is important.
One first should discover which useful mathematical structure and corresponding
useful properties are hidden in the problem.

In this paper we consider the unstructured problem (black box case). One should
notice, that despite information on structure is assumed not to be available, other in-
formation, so-called value information, becomes available when running algorithms,
such as: number of local optima (better: results of a local optimization routine)
found thus far, average number of function evaluations necessary for one local
search, best function value found, etc. Such indicators can be measured empirically
and on one hand can be used to get insight into what factors determine the success
of a particular algorithm and perhaps on the other hand can be used to improve the
performance of an algorithm.

Observing literature on GO, we can distinguish three types of results:

(1) A description of a practical problem, analysed and solved successfully by a
particular method. Such successes illustrate the relevance of studying Global
Optimization. Usually this leads to further questions on whether perhaps there
are other methods more suited to solve the derived mathematical optimiza-
tion problem. First of all, with this result the translation has been made from
practical problem to a mathematical optimization problem.

Controlled Random Search has contributed to solve (and understand) practical
problems resulting in many papers, among others García et al. (1997) and
Klepper and Rouse (1991). It is one of the methods using a population of
candidate points. It has been popular in parameter estimation, as the cloud of
final points indicates the sizes of compartments around local optima providing
insight into the uncertainty of estimated parameters (see, e.g., Klepper and
Hendrix (1994)).

(2) Numerical results, sometimes called empirical or experimental results. They
are often based on standard test problems for which a particular algorithm
is run and various performance criteria are evaluated. Despite the fact that
sometimes it looks like an advertisement context for a particular method, it is
a useful way to illustrate tendencies, but even more a way to detect surprising
counter intuitive results which require further analysis.

(3) Analytical results in the form of theorems and propositions. Assumptions are
made either on algorithms or on problems to be solved and properties on the
performance either on effectiveness or efficiency are derived. In contrast to
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the attraction of CRS to be used to solve practical problems, CRS has never
been very popular among researchers on the theory of global optimization al-
gorithms; up to date there was no analysis on the performance of the algorithm.
Some benchmark analytical results exist on stochastic methods related to CRS,
which are discussed in Section 2.

In this paper we aim at an intermediate between analysis and experiments.
Constructed test functions are used to analyse which measurable factors determine
the performance of the algorithm. In Section 2, a description of the terminology
in stochastic methods, its performance indicators, the relevance of Success Rates
and a summary of some relevant results are given. In Section 3, a description of
the algorithm under study is presented. The research question is refined towards
CRS. In Section 4, some analytical results are presented. Finally in Section 5, the
consequence of the results for the original research questions is discussed.

2. Success rate and benchmark results on stochastic methods

In this section, the relevant terminology of stochastic methods is introduced and the
properties we can aim at, are embedded in existing results for stochastic methods.
Furthermore, it is explained why Success Rates are interesting to investigate.

Stochastic methods are understood to contain some stochastic elements. Either
the outcome of the method is a random variable or the objective function itself
is considered a realisation of a stochastic process. For an overview on stochastic
methods we refer to Törn and Zilinskas (1989) and Boender and Romeijn (1995).
Apart from the continuity of objective function f , the methods in general require
no structure on the optimization problem. Therefore the methods are generally
applicable.

In literature on stochastic methods, the main property which is aimed at is that
when effort increases to infinity, a point is generated in the ε-environment of a
global minimum point with probability one. This defines the effectiveness of an
algorithm. Analytically this main property can be derived whenever a designed
algorithm is allowed to sample everywhere in the feasible area with a certain prob-
ability. Empirically, by means of test functions, one can measure how many times
the global optimum has been reached by a certain algorithm. As in general with
stochastic methods, we need many repetitions to measure performance criteria, as
to average out the stochasticity. Moreover, for population based algorithms one can
redefine the effectiveness criterion as to be able to locate all global minimum points
and to cover all corresponding compartments of the δ−level set (see Hendrix and
Klepper, 2000). This is much harder and sometimes even impossible.

Efficiency can also easily be measured in an empirical way. As a performance
criterion, in general the expected number of function evaluations necessary to reach
convergence, is taken. As these empirical results depend on the test functions under
consideration, it is good to have a better look at the structure of the functions: which
factors determine the performance. Like in a design of experiments one should
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construct extreme cases (best or worst cases) of the test functions as to investigate
an expected relation as firmly as possible. From an analytical point of view, it is
much harder to derive results on the speed of convergence.

In literature on nonlinear optimization (see, e.g., Gill et al., 1981), usually the
rate of convergence of iterative sequences is derived as a limit measure when the
iteration counter k approaches infinity. Population algorithms like CRS typically
follow two stages. In a first stage the global minimum points and their environments
should be found and the population has to leave the ‘valleys’ of the local minima. In
a second stage the exact location of the local minimum points has to be identified.
The function evaluations are dedicated to both tasks which complicates the analysis
of the number of function evaluations as measure for efficiency. In Section 4, the
analysis will be restricted to the limit behaviour in the final stages of the algorithm.

We introduce some formalisation here. We do not intend to give a full exposé on
terminology on stochastic methods and leave out ideas, not necessary to understand
CRS. Concepts like region of attraction and stopping criteria are not discussed. We
introduce the generic problem formulation:

min f (x), x ∈ X ⊂ Rn, (1)

in which f (x) is a real valued continuous function and the feasible set X, is a com-
pact body. The global minimum is denoted by f ∗ and the set of (global) minimum
points by S∗. The level set belonging to level y is defined as those points in the
feasible set with an objective function value less than or equal to y

S(y) = {x ∈ X : f (x) � y} (2)

So S∗ = S(f ∗) is the set of global minimum points. Important in the analysis is
the notion of the relative size (volume) of a level set:

µ(y) = V (S(y))/V (X) (3)

in which the function V denotes the volume of a set. The problem is considered
to be solved if one obtains a point in the neighbourhood Bε(S

∗) of one of the
minimum points; the point is in the set

Bε(S
∗) = {x ∈ X : ‖x − x∗‖ � ε f or some x∗ ∈ S∗} (4)

or the function value is in a δ-level set from the global minimum

x ∈ S(f ∗ + δ) (5)

In the comparison of algorithms, one benchmark is Pure Random Search (PRS).
PRS only performs a global search by generating and evaluating independent and
uniformly distributed random points x in the feasible set X. So the function val-
ues y= f (x) are random variables of which the cumulative distribution function
(c.d.f.) is given by P(y� y) = P(f (x) � y) = µ(y). The basis of reaching the
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optimum with infinite effort is that after having generated N points, the probability
that the problem is solved, i.e. the best point (record) found is in Bε(S

∗), is

1 −
(

1 − V (Bε(S
∗))

V (X)

)N

(6)

or alternatively, the probability that the best point is in the δ−level set

1 − (1 − µ(f ∗ + δ))N (7)

which converges to one when the number of generated points, N , grows to infinity.
Another benchmark algorithm is called Pure Adaptive Search (PAS). PAS is

a hypothetical algorithm that can be used as a reference to study the speed of
convergence. PAS is not a real implementable algorithm, but a tool for analysis of
complexity and in some sense a theoretical ideal. The analysis in literature focuses
on the question: given the current iterate xk , yk = f (xk); what will happen with
the speed of convergence if we would be able to sample a point uniformly in the
improving region, the level set Sk = S(f (xk)). So, the most important assumption
of PAS is that the next iterate xk+1 is a sample point from a uniform distribu-
tion over the interior of the current level set Sk. At every iteration the function
value is improving� The most important property, shown in Patel et al. (1988)
and Zabinsky and Smith (1992), is that in some sense the expected number of
iterations grows less than exponential in the number of variables of the problem.
In Hendrix and Klepper (2000), it has been shown why it is improbable that this
ideal will be reached, as it implies the existence of a polynomial algorithm for GO.
This means, as it is improbable to have a polynomial algorithm for GO, it is also
unlikely that one can fulfill the assumption that sampling a point from a uniform
distribution over the current level set can be performed in a time which grows only
polynomially in the dimension n of the problem.

To make the way of thinking of PAS applicable for the analysis of population
based algorithms such as CRS, the extension of PAS to N-points PAS (NPAS)
was introduced. NPAS implies performing PAS with a population of N points
simultaneously, in which the current level set Sk = S(yk) is defined by the worst
point in the population. In Baritompa and Steel (1995) and Klepper and Hendrix
(1994) was shown that the complexity is the same as that of PAS; NPAS is a
hypothetical algorithm, an ideal, with a polynomial complexity. The algorithm to
be investigated, CRS, is a realistic, implementable algorithm which deviates from
the reference ideal of NPAS on the following points:
(1) A newly generated point is not a sample from a uniform distribution.
(2) Not every new point is an improving point, i.e. has a better function value than

the worst point in the population.
With respect to 1, it is useful now to introduce the notion of Success Rate

(or conversely Failure Rate). The Success Rate (SRk) is defined in a theoretical
� To be more precise, strictly improving, i.e., f (xk+1) < yk is required.
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environment as the probability that the next generated point is an improving one,
i.e. is in the interior of the current level set. To follow the line of reasoning of PAS,
in NPAS it also should be strictly improving in the sense that f (xk+1) < yk, where
yk is the function value of the worst point of the population which is now discarded.
This probability does not only depend on the algorithm, but also on the problem to
be optimized, on the dynamics (current level set) and also on the current population
(or points). One can define a measurable indicator such as frequency with which one
samples inside Sk. This indicator can be used as an estimator of the Success Rate
whenever SRk is either fixed to or converges quickly to a ‘steady-state’ value SR∗.
To analyse the behaviour, therefore in Section 4 we will focus on cases for which
the Success Rate SRk of the algorithm converges quickly to a limit value SR∗.

For the estimator, one can either calculate at the end of the algorithm the number
of points being evaluated with an improvement compared to the total number of
function evaluations, or one can update an estimate to get insight in the devel-
opment during the course of the algorithm. In particular in the CRS algorithm, a
success rate indicator srk is calculated and used explicitly to steer the algorithm in
its choice between local and global search, as will be explained in Section 3.

An important result with respect to the notion of Success Rate is described in a
paper called Towards Pure Adaptive Search (Baritompa et al., 1995). In this paper
it was shown that PAS can be relaxed in the following way. The Success Rate
defined as the probability that the next iteration point is uniform in the improving
region should have a fixed (independent of the dimension) lower bound ρ > 0.
This is called ρ-adaptive search and alternatively in (Bulger and Wood, 1998)
called hesitant adaptive search; the algorithm hesitates in finding improvements.
The same polynomial complexity bound holds as that of PAS. Again by reasoning
reversely, we can conclude that it is unlikely that there exists an algorithm with a
Success Rate which independently of the dimension is bounded from below by a
positive constant ρ. On the other hand, it makes us curious how SR behaves for
increasing dimension for realistic, implementable algorithms.

For the understanding of this concept, let us first note that PAS implies always
improving, such that implicitly ρ = 1. Consider on the other hand, what happens
with the Success Rate in Pure Random Search, another extreme. Let us assume
that a level yk has been reached. The probability of an improvement P(yk+1 < yk)

(Success Rate for finding a point within S(yk)) approaches zero when yk approaches
the minimum. So the Success Rate is not bounded from below by a positive con-
stant, but converges to zero. When µ(yk) is continuous between the minimum and
maximum objective function value, (Karnopp, 1963) has shown that the probability
that a new function evaluation leads to an improvement after nf evaluations have
been performed, is equal to 1/(nf +1); it goes to zero. The surprising aspect of this
result is, that it does not depend on the optimization problem under consideration.

For CRS no bounds or expressions have been derived in an analytical way, so
far. In (Hendrix and Klepper, 2000), a derivation can be found for another popula-
tion algorithm, similar to CRS, called Uniform Covering by Probabilistic Rejection
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(UCPR). Essential in such a derivation is to make assumptions on the form of the
level sets. Our framework implies the construction of test functions (extreme cases)
in a systematic way such that a relation can be derived between performance (here
SR) of an algorithm and factors such as the characteristics of the function to be
optimized and the parameters of the algorithm. In the following section, this idea
is elaborated for CRS.

3. Framework: questions on Controlled Random Search

The Controlled Random Search algorithm, proposed by Price, is a simple and
direct procedure for global optimization, applicable both to unconstrained and
constrained optimization problems (Price, 1978, 1979, 1983). In this work, it is
assumed that the global optimization problem to be solved is that described by (1),
where X is a hyper-rectangle.

r

r

r1

2

3

centroid

Primary point

Secondary point

Figure 1. Controlled Random Search

Price described several variants of the algorithm. The version of CRS as in-
vestigated in this paper is detailed at Algorithm 1. The algorithm starts by filling
the population R initially with a sample of N trial points uniformly distributed
over the search space X. The algorithm iteratively updates the set of trial points
(population) R until stopping conditions are reached. At every iterative step k,
two different kinds of trial points may be computed; the so called primary and
secondary trial points. Both kinds of trial points are generated by performing an
operation on a subset {r1, . . . , rm+1} ⊂ R of m + 1 trial points. The points ri ,
i = 1, . . . , m+ 1 of this generation subset are randomly selected from the current
population R of N points. In the first versions of the algorithm, m was taken as the
dimension n. Primary points are generated in a Nelder–Mead fashion (Nelder and
Mead, 1965) by mirroring (reflecting) a point (rm+1) over the centroid, G, of the
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Algorithm 1. CRS(f,X,N,m, α)

Set k = 0, nf = 0 and ns = 0
Generate and evaluate a set R, of N random points uniformly on X
while (Stopping Conditions)

select at random a subset {r1, . . . , rm+1} from R

G = 1
m

∑m
i=1 ri

P = 2 ×G− rm+1 # Primary points
k = k + 1, nf = nf + 1
determine yk = f (rmax) = maxif (ri ), ri ∈ R

if P ∈ X AND f (P ) < f (rmax)

replace rmax with P in R; ns = ns + 1
else if (srk = ns/nf ) < α # Rate of Success Test

P = 1
2 (G+ rm+1) # Secondary points

if f (P ) < f (rmax)

replace rmax with P in R; ns = ns + 1
nf = nf + 1

End while

remaining subset of points r1, . . . , rm. A secondary point is located in the middle
between rm+1 and the centroid G (see Figure 1). Note that a secondary point is a
convex combination of a subset of the population.

Secondary points are only computed if the current primary trial point fails and
the estimate (srk) of the success rate on finding better function values than the
worst value yk in the current population, is below the value of a parameter α (Price
suggests α = 0.5).

Note that whenever the population has reached a convex level set (or one con-
vex compartment of a level set), the calculation of a secondary point implies an
improvement (function value is not worse than yk). However, this does not imply
that the algorithm starts behaving as NPAS, in a constant improving manner due to
the secondary points. Namely, when the Success Rate exceeds the value of α, only
Primary points are generated. This means that in the analysis of the Success Rate
we should take care when it starts approaching the level of α. Around this level,
the algorithm fluctuates in its decision of generating secondary points.

3.1. questions on values for the parameters of the algorithm

Besides α, the population size N and the size m of the subset used to compute the
centroid G, are parameters which can be influenced by the user. In Ortigosa et al.
(1999) a variant of the CRS algorithm namely DCRS (Delayed CRS), which uses
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a buffer, is described. This mutation permits the algorithm to be run in parallel and
also introduces an additional parameter namely the buffer size b.

Algorithm
Performance

Parameters
of the algorithm

Opt. Problem

Characteristics

Value Information

N,m,α

n,K

SR, #clusters

CRS

St
ee

ri
ng

Figure 2. Questions on the performance of CRS, focus on Success Rate

The question is, how much the efficiency increases (or decreases), with varying
dimension n of the problem to be solved and with a varying number of global
or local minimum points. Which factors cause an increase or decrease in effi-
ciency (expected number of function evaluations)? Some extreme cases are used
to study relations between the performance and factors such as the characteristics
of the function to be optimized and parameters of the algorithm. It is interesting
to know how the Success (Failure) Rate of CRS evolves. In a certain sense it is
a performance indicator which, given the analysis of ρ-adaptive search, gives an
indication on the possible speed of convergence. The final aim is to get insight in
how to improve the performance by adjusting parameters when value information
becomes available. One could introduce a feedback choice rule in this way, thus
making endogenous other parameters (see Figure 2). An example of such a rule is
given in the CRS algorithm in which the estimate srk of the Success Rate can be
considered value information to steer the choice between primary and secondary
points thus introducing implicitly a new parameter α. Another possible source of
information is to estimate the number of clusters the population consists of in an
attempt to estimate the number of minimum points. This includes the local ones
in the beginning, but converges to the global ones whenever the algorithm is suf-
ficiently effective to detect all members of S∗. Let us assume that there is a finite
number K of global minimum points in S∗. The algorithm is only able to detect the
optima when the final level set consists of K compartments, i.e. there exists a level
y for which the level set S(y) consists of K compartments. In the next section, we
are going to study the behaviour of CRS analytically.
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Population in K clusters

...1 m+1

Figure 3. Population spread over several compartments

4. Analytical Results based on extreme cases

This section is intended to discuss the mechanisms involved in CRS and to derive
some analytical results, which will be compared to the corresponding experimental
results. CRS is a realistic algorithm which can be seen as an approximation of the
theoretical ideal of NPAS (or a ρ-Adaptive search). We are interested in the beha-
viour of the Success Rate. As stated before, it is usual in Nonlinear Optimization to
consider the limit behaviour of the algorithm, i.e. the tendency in the final iterations
of the algorithm. We use test problems designed such that the Success Rate reaches
a fixed value soon, which makes analysis of the limit situation possible and com-
parable with numerical (experimental) results. In limit, the algorithm encounters
two possible situations:
(1) The problem has one global minimum point.
(2) The problem has several (K) global minimum points.
In the end, during the last iterations of the algorithm, the number of clusters the
population consists of, is determined by the number of global minimum points.
The algorithm is only able to detect the K global minimum points, when the
final level set S(f ∗ + δ) consists of K compartments. To avoid complications,
in Nonlinear Optimization (see, e.g., Gill et al., 1981) usually assumptions on the
objective function like sufficient smoothness is posed. For us the question is to
study the behaviour when the population spreads out over K clusters. For this to
happen, the final level set should consist of K compartments and correspondingly
the function should at least have K global minimum points. When the algorithm
effectively detects all global minimum points, the population is represented in all
compartments of the final level set, as suggested in Figure 3.

For secondary points the following can be derived. When there is one global
minimum, the final level set often consists of a convex region. Usually in analysis
on nonlinear optimization (see, e.g., Gill et al., 1981) an elliptic region is assumed.
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As the secondary point is a convex combination of the current population, an im-
provement (no failure) will be found. Without any further analysis we can derive
from this reasoning the feedback rule that when the population during the course of
the algorithm starts clustering in one small group, it might be profitable to increase
α as more local search is performed.

When the population spreads out in limit over several clusters as suggested in
Figure 3 (the clusters are much smaller than illustrated), the probability of a failure
for a secondary point becomes high. The limit failure rate is high when the number
of clusters (minima) K is high, when the points are more equally spread over the
compartments of the level set and when m is big, because the probability that all
m+ 1 points are taken from the same cluster is lower. Of course one can construct
exotic instances with such a symmetry that points taken from various compartments
by coincidence lead to secondary points which fall into other compartments. The
general tendency leads to a feedback rule to keep α low (not to generate many
secondary points) whenever the population spreads out over many clusters.

The analysis up till now answers our questions on secondary points sufficiently.
Therefore, we concentrate on primary points further. Two questions have our par-
ticular interest:
(1) What happens to the limit Success Rate with increasing dimension n?
(2) How is the limit Success Rate influenced by parameter m?
The general idea one can extend from the analysis above is to consider the case
when there are K minimum points corresponding with K compartments of the
limit level set. When the algorithm is effective, the final population is spread over
K clusters corresponding to these compartments. Improvements like that of the
one minimum point case, usually only take place when all m + 1 points are taken
from the same compartment. The probability for all m + 1 points to be in one
compartment when the points are equally spread is K−m, which leads to low prob-
abilities whenever the population is spread over many clusters, corresponding to
a large number K of global minimum points. This idea leads to a tendency of
concluding not to enlarge the number of points m which are used for building the
centroid G, unless the number of clusters is low. Before the limit has been reached,
improvements may also occur by detecting new compartments, minimum points;
the global search plays a role.

In the sequel, we will try to find a more quantitative base for the tendencies and
to consider the case when the population is not equally spread over the compart-
ments. This can only be done for constructed (extreme case) test functions.

4.1. CONSTRUCTION OF THE TEST CASES

In order to get estimates for a Success Rate, we should look for instances for which
the Success Rate is relatively constant during the course of the algorithm. Again,
we distinguish two interesting situations:
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4.1.1. The problem has one global minimum point

In nonlinear optimization it is common to consider the level set around the min-
imum as an ellipsoidal region. By transformation with the Hessean this leads to
spherical level sets. Spherical level sets appear for the so called spherical problem:

min{f (x) = ‖x‖} on X = {x ∈ Rn : ‖x‖ � 1} (8)

The spherical problem is relevant for the general case for two reasons. Firstly,
it can easily be transformed to the conical convex program which was used in
Patel et al. (1988) to derive the polynomial result of PAS. The conical problem as
such provides a bound on convergence speed of the general convex optimization
problem. Secondly, as noted in Hendrix and Klepper (2000), the spherical prob-
lem provides an upper bound of the Success Rate on the general case of elliptic
level sets as its volume-surface ratio is at a minimum. Let us repeat, that we are
particularly interested in what happens to the Success Rate when the dimension
n increases. To facilitate this analysis, focus is on the infinite norm variant of the
spherical problem, which for clarity sake will be called the squarical problem.
Squarical functions are defined by the infinite norm, f n(x) = maxj | xj |;
j = 1, . . . , n. Squarical functions behave similarly to spherical functions and in
addition the shape of the level sets is similar to the initial search space; they consist
of a hyper-square.

Apart from the bounding perspective, why making use of such extreme cases
in the analysis? The spherical, conical and squarical functions have in common
an essential aspect in the derivation of results on efficiency for (N)PAS, namely
that the improvement is stationary. Stationarity means here that the distribution of
the improvement during the course of the algorithm does not change. During the
iterations, generating a new point xk+1 randomly in S(yk) gives a function value
yk+1. For this constructed class of optimization problems yk+1 has a probability
distribution given by F(yk+1) = (yk+1/yk)

n for 0 � yk+1 � yk. This means that
the relative improvement yk+1/yk has the same distribution in every iteration; it
does not depend on the level yk which has been reached. For CRS, when the points
are uniformly distributed over the level set, the Success Rate SRk has a constant
value SR and can be estimated by a converging value (steady state) of srk .

4.1.2. The problem has several global minimum points

We are interested in the relation between the Success Rate of the one-minimum
point case and the case when K minimum points exist; to be precise, when the
limit level set contains K compartments. As argued before, in limit for secondary
points a failure (no improvement) may occur when the m points are taken from
various compartments. As will be argued in the sequel, the success of generating
primary points may profit from geometrical structure in the location of the optima.
In the usual test functions in GO, some structure exists in the location of the
optima. This structure gives a special effect, which we study here from one of
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the easiest modifications of the spherical problem and call a bispherical problem.
The essential part of this problem is that (for low function value) the level sets of
the global minimum contain two separated equal sized compartments. Although
the bispherical function can be defined in any dimension, we give here the two
dimensional variant:

f (x) =
{
(x1 − 1)2 + x2

2 if x1 � 0
(x1 + 1)2 + x2

2 if x1 < 0
(9)

The feasible set is defined by the box x1 ∈ [−4, 4] and x2 ∈ [−1, 1]. For this
extreme instance, an analysis is possible on the ratio between the Success Rate
of this function and that of the spherical problem, thus giving insight in what can
happen with an increasing number of global minimum points.

4.2. TEST ALGORITHM

The Success Rate is analysed for Primary Trial Points distributed on the search
space X = [−1, 1]n for the squarical problem. Empirically it means to work
with a version of CRS (CRS(f,X,N,m, α = 0)) where Secondary Points are
not computed.

As formulated above, it is of specific interest to know how the Success Rate
of CRS evolves and how it depends on parameters such as N,m, α or on its
own dynamics (current level set). The limit Success Rate SR is estimated with
the steady-state value of the parameter srk used in the algorithmic definition of
CRS. If the algorithm evolves in such a way that from a certain iteration k, srk
reaches a steady state, then srk can be seen as a measure of the probability that the
next sample point is in the Sk-level set S(yk). This happens (leaving out boundary
effects) for spherical and bispherical problems when a level of 1, so yk < 1, is
reached. For the squarical problem this is the case from the start of the algorithm.
The analysis starts now by first considering the Success Rate of the algorithm
on a one dimensional function with one optimum. This leads to an estimate for
higher dimensional functions with one optimum. Finally we will use the bispherical
problem to analyse the Success Rates for cases with several optima.

The idea is to start by analysing the success rate SR(n = 1) of the one-
dimensional squarical function (f 1(x)) first. Thinking in a uniform distribution on
a hyper-square leads to the idea that the m + 1 points to run the algorithm are de-
termined by a sample which is independent for every dimension. The consequence
of this, is to be tempted to estimate the Success Rate for the n-dimensional squar-
ical function as SR(n) = (SR(n = 1))n. If this would be true, the exponential
behavior confirms the intuition that it is not possible to construct a ρ − adaptive

search algorithm. However, this straightforward conclusion is not completely jus-
tified as we will argue; (SR(n = 1))n defines a lower bound on Success Rate of
squarical problem f n(x) for CRS. The observed Success Rate will be bigger.
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4.3. SQUARICAL FUNCTION (ONE OPTIMUM) ONE DIMENSIONAL

The Success Rate is analysed for Primary trial Points distributed on the search
space X = [−1, 1]. Note that the squarical function is the same as the spherical
in one dimension and is equivalent to the conical problem. In the algorithm yk =
f (rmax) is the worst function value in the sample and defines the current level set
[−yk, yk]. The Success Rate to be found is the probability that the reflected point
is in the current level set, SR(n = 1) = P(−yk � 2× G − rm+1 � yk). An
assumption in the analysis is that all points to build the Primary point are taken
from a uniform distribution over [−yk, yk]. This is correct for the first iteration
and in the other iterations does not deviate very much, as was shown in Hendrix
and Klepper (2000) and also follows from the empirical results. The result of the
derivation which can be found in Appendix A, is that for m = 2, the Success Rate
SR(n = 1,m = 2) is given by:

SR(n = 1,m = 2) = 2
∫ 1

0
(1 −G)× (1 −G)dG = 2

3
(10)

In general (m � 2), G can be approximated by a random variable normally distrib-
uted according to N(0, 1

3m). This leads to (Appendix B):

SR(n = 1,m) ≈ 2,(
√

3m)− 1 − 2√
3m

√
2π

(1 − e− 3m
2 ) (11)

in which , is the cumulative distribution function of the standard normal distri-
bution. The result of equation (11) illustrates that when m increases, the primary
points of CRS start behaving more and more as a local search; SR tends to 1. We
measured the resemblance of analytical approximation (11) of the Success Rate
with running the algorithm. In Table 1, an analytical estimate of the Success Rate
(SR) based on equation (11) and an experimental estimate (SRe) being the average
over 100 runs of the values of srk at the last iteration k of CRS, can be found. It can
be seen from Table 1 that experimental averages do not significantly differ from
the analytical ones. The value for m = 2 shows that approximating the distribution
of G with the normal distribution gives nearly the same SR estimate as the real one
of 2/3.

As can be observed from the idea of (11), an increasing number m of points to
build the centroid, leads to stronger centralisation (variance of G becomes smaller),
such that the probability of a point to be reflected out of the level set becomes
smaller. From this idea, one can derive the feedback rule to increase parameter m,
whenever one suspects from observations (value information) that the population
clusters around one (global) minimum point.
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Table 1. Success rate: analytical estimate and average
over 100 runs (n = 1).

Analytical estimate Experimental estimate

m SR(n = 1, m) Average SRe(n = 1,m)

2 0.676176 0.674582

3 0.734293 0.739865

4 0.769709 0.774382

5 0.793993 0.801280

6 0.811937 0.818653

7 0.825887 0.832684

8 0.837132 0.842565

9 0.846447 0.852221

10 0.854327 0.860099

4.4. SQUARICAL FUNCTION (ONE OPTIMUM) HIGHER DIMENSIONS

In the analysis, first focus was on behaviour of the algorithm with varying m start-
ing from the point of view of a one-dimensional squarical (is equal to spherical)
function. There are various extensions possible to consider the behaviour in higher
dimensions. In the use of the algorithm for the choice of the parameter m often
either m = 2 is taken or m = n, in which n is the dimension of the function under
consideration. For the latter case a straightforward extension would be to approx-
imate the Success Rate by the underestimate SR(n,m = n) = (SR(1,m = n))n.
The confrontation with an empirical estimate based on the average of 100 runs
is given in Table 2. Where the analytical underestimate decreases significantly
with increasing dimension n, we observe that reality is doing much better; the
Success Rate of CRS on the squarical problem diminishes less problematic with
the dimension.

The estimated lower bound could be improved slightly by the following obser-
vation. The N points in the population are not equally spread over the hyper-square
defined by yk, as the maximum element value in every dimension is different; yk
is the maximum over them. Therefore the population is spread over a hyperrect-
angular set enclosed by the current level set. Analysis on this hyperrectangular set
would lead to a reasonable estimate of the Success Rate, but is not directly possible.
Instead we focus on a larger set on the basis of extreme order statistics which at
least gives an improved lower bound in Appendix C for the case m = 2. This leads
to the following (lower) estimate:

SR(n,m = 2) = 2

3

(
2

3
+ 1

2(N − 1)

)n−1

(12)
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Table 2. Success rate: analytical underestimate and
average over 100 runs, n = m.

Analytical results Experimental results

m SR(n,m = n) = Average

(SR(n = 1, m))n SRe(n,m = n)

2 0.457215 0.464163

3 0.395921 0.429452

4 0.351000 0.404189

5 0.315562 0.384363

6 0.286508 0.369596

7 0.216455 0.355846

8 0.141493 0.345798

9 0.082035 0.336230

10 0.042902 0.328356

Table 3. Success rate: analytical underestimate
(SR) and experimental estimate (SRe), m = 2.

Analytical results Experimental results

n SR(n,m = 2) SRe(n,m = 2)

1 0.666667 0.674582

2 0.446119 0.464163

3 0.297785 0.321358

4 0.198647 0.223850

5 0.132418 0.156067

6 0.088342 0.109405

7 0.058905 0.076559

8 0.039276 0.053930

9 0.026186 0.038192

10 0.017459 0.027264

It is interesting to see that another parameter of the algorithm, namely N has been
included in the estimate. Table 3 gives the confrontation of the new lower bound
with experimental estimates based on an average of 100 runs and population size
N = 100×n. The choice of a big value forN does not promote the efficiency. How-
ever, the choice of N is usually determined by effective covering considerations;
one tries to find all global minimum points. It is nice to observe that reality is per-
forming better than what can be derived analytically. Comparing the experimental
results in Table 3 with those in Table 2, shows again the improving behaviour when



ON SUCCESS RATES 255

larger values for parameter m are used in cases where the population of points is
condensed around one global minimum point.

4.5. TWO MINIMUM POINTS, THE BISPHERICAL PROBLEM

We consider the relation between the limit Success Rate of the one-minimum point
case of which the spherical problem is a pure case and the limit Success Rate when
there are several global minimum points and corresponding compartments of the
limit level set. The bispherical problem is an example of that. We focus on the ratio
θ = SRbisph/SRsph, which we expect to be smaller than one and call θ(m) for a
value of parameter m. Two effects are distinguished:
(1) The probability θc(m) that all m + 1 points appear in the same compartment,

sphere of the level set, will be called the compartment component of θ .
(2) The geometric structure of the location of the minimum points may add a so-

called geometric component θg(m). This means that the reflected point may
have the possibility to end up in another compartment of the current level set
than it is taken from.

4.5.1. Compartment component

The probability that all m+1 points are taken from the same compartment depends
on the distribution of the N points (population) over the two spheres. Given that a
fraction p of the points is in one set and a fraction (1 −p) in the other, leads to the
probability:

θc(m) = pm+1 + (1 − p)m+1 (13)

If the algorithm covers well, p should have a value of 0.5 and equation (13) reduces
to

θc(m) =
(

1

2

)m

(14)

Note that whenever the algorithm does not cover completely (p deviates from 0.5),
θc(m) is higher. In extreme cases when p becomes zero (or alternatively one),
θc(m) takes a value of one, because the algorithm solves a spherical problem.

4.5.2. Geometric component

For a point to have the possibility to be reflected into another compartment, it is
necessary for the centroid to be near the middle line separating the compartment
the reflection point rm+1 is taken from and the compartment it is reflected into.
For the bispherical problem, the geometric component θg(m) is estimated with the
probability that the centroid is in the middle of the two (tiny in limit) spheres as
indicated with the second possibility in Figure 4. Notice that this probability only
is nonzero when m is an even number. Given that a fraction p of the N points is in
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m+1 points in same sphere
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r m+1 (m is even)

Figure 4. Components in determining the Success Rate of the spherical versus the bispherical
problem

one of the compartments, the probability that there are m
2 points as well as in the

left sphere as in the right sphere (binomial distribution) is given by:

θg(m) =
(
m
m
2

)
× p

m
2 × (1 − p)

m
2 (15)

For p = 0.5 this reduces to:

θg(m) =
(
m
m
2

)
×
(

1

2

)m

(16)

The idea of the two components of θ(m) is depicted in Figure 4 for p = 0.5.
We built an estimate of θ(m) = θc(m) + θg(m) based on Eqs. (14) and (16)

and confronted this with empirical estimates based on average limit values for
the spherical and bispherical problem. The geometric component may be hard to
measure empirically, because it only can be observed clearly in the limit situations
where the population forms two tiny clusters around the two global minimum
points. Moreover, when for odd values of m the centroid is close to the middle,
improvements are found in a non-limit situation such that the empirical estimate
may deviate.

In Table 4.5.2 first a confrontation is given for m = 2 which leads to a fixed
analytical ratio of θ(2) = 75% for increasing dimension n. The empirical ratio is
slightly bigger, which may be explained from deviations from equally covering.
In Table 5 the value of m is varied and we can observe what happens with the
Success Rate of spherical versus bispherical function when m is increased for a
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Table 4. Empirical estimates of Success Rate

(n,m = 2) for bispherical (SRbisphe ) and spher-

ical (SRsphe ) functions with corresponding exper-
imental estimate of θ (E.E).

n SR
bisph
e SR

sph
e E.E.(%) of θ(2)

2 0.363335 0.477999 76.01

3 0.262783 0.345604 76.04

4 0.191614 0.252941 75.75

5 0.141369 0.186863 75.65

6 0.105186 0.138794 75.79

7 0.078642 0.103492 75.99

8 0.059031 0.077592 76.08

9 0.044560 0.058359 76.35

10 0.033766 0.044173 76.44

two dimensional spherical and bispherical problem. Given the estimates in Table
4.5.2, there is no reason to expect the ratio to be different for n > 2. Two different
types of deviations may be observed. For even values of m the measured values are
slightly more optimistic than the analytical estimates. However, for odd values of
m the gap is much bigger. Apparently the idea that the algorithm is effective and
p has a value around 0.5, is not valid. We can check this for individual runs by
following dynamically the attained values of srk . This is depicted in Figure

Table 5. Building an analytical estimate (A.E.) of θ(n = 2, m) and empirical
estimates (E.E.).

m θc θg A.E. (%) SR
bisph
e SR

sph
e E.E. (%)

2 1/4 1/2 75.00 0.363445 0.478627 75.94

3 1/8 0 12.50 0.327768 0.577710 56.74

4 1/16 6/16 43.75 0.279986 0.636683 43.98

5 1/32 0 3.12 0.220582 0.678977 32.49

6 1/64 20/64 32.81 0.237113 0.707116 33.53

7 1/128 0 0.78 0.120877 0.730029 15.69

8 1/256 70/256 27.73 0.214815 0.747321 28.74

9 1/512 0 0.19 0.054925 0.762068 7.21

10 1/1024 252/1024 24.70 0.202490 0.773002 26.20

5. This figure shows the sharp contrast between m odd and m even. For odd values
of m, after a while srk is increasing again which means that the algorithm is con-
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Figure 5. Dynamics of empirical estimate of Success Rate (SRbisphe (n = 2, m)):
non-stationary for odd values of m.

verging to one of the global optimum points. The limit value of srk converges to
that of the spherical problem. Notice again that the results in the figure represent
one run, whereas the data in the table represent the average over 100 runs.

An increase in the parameter value m leads to improvements in the Success
Rate for the spherical (one minimum point) case, due to intensification of the local
search behaviour. We can see from Table 5, that when two minimum points appear,
using a higher value for m does not reduce the Success Rate dramatically as long
as it is an even number. The apocalyptic prediction of the compartment component
disappears due to the additional probability that the centroid may end up in the
middle.

5. Conclusions and discussion

In this paper a framework has been presented to investigate the behaviour of Global
Optimization algorithms. Within this framework the algorithm of Controlled Ran-
dom Search has been investigated and the following elements have been discussed:

− Criteria on effectiveness and efficiency. The relevance of the idea of Success
Rate SR for speed of convergence (in limit) has been brought forward and a
measurable estimator srk has been defined.

− Parameters of the algorithm which can be used to steer the algorithm are the
population size N , the secondary point calculation determined by α and the
parameter m which defines the number of points to build the centroid.
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− As characteristics of instances the number of global minimum points K and
the dimension of the problem n have been distinguished.

The investigation lead to some qualitative statements and quantitative analytical
results. Qualitatively the following can be said.

− A value for the population size N is usually determined by effectiveness
considerations; one tries to find all global optimum points. Although its value
directly influences the number of function evaluations, it does not have a large
impact on the final Success Rate

− The value of parameter α (secondary points) can be made high whenever the
population finds itself in one convex level set (one optimum point case). As a
secondary point is a convex combination of the population, its function value
is at least not worse than the function value determining the current level set.
On the other hand, whenever the population is spread out over several clusters,
secondary points tend to lead to failures (lowering the Success Rate). This
means that it is worthwhile to look into possible value information consisting
of indicators that measure the clustering behaviour.

− Increasing parameter m leads to local search behaviour whenever the popula-
tion clusters around one global minimum point.

To study the dependency of the Success Rate SR on the parameter m as well as
dimension n, an attempt has been made to come to analytical estimates for cases
where the Success Rate is constant, such that empirical estimates can be made.

− For a one-dimensional function equivalent to the spherical, squarical and con-
ical problem we obtained analytical estimates for varying m which match em-
pirical estimates ‘reasonably’. Qualitatively it supports the above mentioned
local search behaviour that SR improves with increasing m.

− Extending the analysis for increasing dimension n with the help of the squar-
ical problem is not easy. The straightforward extension provides analytical
underestimates that predict an exponentially bad behaviour. The underestim-
ate shows an increasing (in n) gap with what can be observed experimentally.
Empirically seen, the limit Success Rate when having reached the level set
of one global minimum point, does not decrease as much as expected in the
dimension n as long as the choice of m is adapted to n, e.g., m = n.

− Estimates on how the Success Rate is reduced when the algorithm is con-
fronted with two equally sized compartments of the level set, were made on
the base of the bispherical versus spherical problem. Both quantitative results,
analytical and empirical, matched quite fine for even values of parameter m.
In contrary, for odd values of m, effectiveness considerations started playing
a role; it appeared that for odd values of m the algorithm converges to only
one of the global minimum points.
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With respect to extending the analysis in the future for cases with more than
two global minimum points the following remark can be made. The bilateral help
between any pairs of compartments which was described by the geometric effect
θg, does also appear in cases where three (or more) global minimum points exist.
When three final clusters have been detected, using a value for m which is a mul-
tiple of three does not necessarily increase the geometric component. It depends on
the geometric structure in the location of the optimal points, whether the reflection
of a point rm+1 out of one of the compartments has any chance to end up in one of
the other two compartments.
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Appendix A. Success Rate squarical, m=2, n=1

The Success Rate is the probability that the reflected point is in the current level
set, SR(n = 1) = P(−yk � 2× G − rm+1 � yk). The start of the analysis takes
place from stretching the interval [−yk, yk] and considering the points as taken
from [−1, 1], such that SR(n = 1) = P(−1 � 2× G − rm+1 � 1). In this
probability two stochastic variables are involved, namely the centroid G and the
reflection point rm+1. First the conditional probability π(G) of the Primary point
being in the interval [−1, 1] given the centroid G is considered:

π(G) = P(2 ×G − 1 � rm+1 � 2 ×G + 1) (17)

Then we calculate the unconditional Success Rate by integrating over the probab-
ility distribution F(G) of G

SR =
∫ 1

−1
π(G)dF(G) (18)

The conditional probability given G that rm+1 is reflected into [−1, 1] is

π(G) =
{ ∫ 1

2×G−1
1
2dx = 1 −G if G � 0∫ 2×G+1

−1
1
2dx = 1 +G if G < 0

(19)

So the probability is highest when G is close to the middle of the interval. Now
we should determine the distribution of G which is an average of m points from
a uniform distribution over [−1, 1]. For m = 2 the probability density function
F ′(G) corresponds to a triangular distribution and is given by:

F ′(G) = 1− | G | (20)
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So for m = 2, the Success Rate SR(n = 1,m = 2) is given by (using symmetry
around 0):

SR(n = 1,m = 2) = 2
∫ 1

0
(1 −G)× (1 −G)dG = 2

3
(21)

Appendix B. Success Rate squarical, m, n=1

In general (m � 2), G can be approximated by a random variable normally distrib-
uted according to N(0, 1

3m). Using a transformation s =√
3m×G, (so the variance

of s is V (s) = 3m × V (G) = 1) towards the standard normal distribution s∼
N(0, 1) with cumulative distribution function , and density function φ we obtain:

SR(n = 1,m) ≈ 2 × ∫ 1
0 (1 −G)dF(G) =

2 × ∫ √
3m

0 (1 − s√
3m
)d,(s)

(22)

So,

SR(n = 1,m) ≈ 2,(
√

3m)− 1 − 2√
3m

∫ √
3m

0 sd,(s) =
2,(

√
3m)− 1 − 2√

3m

∫ √
3m

0 sφ(s)ds
(23)

where φ(s) = e
− s2

2√
2π

. So,

SR(n = 1,m) ≈ 2,(
√

3m)− 1 − 2√
3m

√
2π

(1 − e− 3m
2 ) (24)

Appendix C. Underestimate Success Rate squarical, m=2, n on the base of
extreme order statistics

The current point set (population) R = {r1, . . . , rN } defines the function value
yk = maxij | rij | over i = 1, . . . , N; j = 1, . . . , n. In every dimension j , a
maximum coordinate value zj = maxi | rij |� yk exists. For one coordinate l the
absolute maximum is attained, zl = yk. In the other dimensions we assume zj to be
a maximum of N uniform points in [0, yk] and the points {r1,j , . . . , rm+1,j } which
determine the primary point to be taken uniformly from [−zj , zj ]. To facilitate
the notation, index j is left out in the sequel. Now we base the probability of the
primary point to be reflected into [−yk, yk] for dimensions other than l on these
assumptions, which increases the lower bound. This is elaborated for m = 2 only.

Analogously to the derivation for the one-dimensional case, first the conditional
probability of 2× G − rm+1 being in the set [−yk, yk] is determined given a value
for z. Again without loss of generality set [−yk, yk] is stretched to [−1, 1]. After
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this, the conditional probability is integrated over the distribution of z. So we
consider z to be the maximum of N points uniform on [0, 1]. The c.d.f. of z is
given by

Fz(z) = zN (25)

Now G is the average of m points from [−z, z] and rm+1 is uniform over [−z, z].
Analogous to equation (19) the probability of 2 × G− rm+1 to be in [−1, 1] given
the value of G is

π(G) =
{ ∫ z

2×G−1
1
2zdx = 1

2 + 1
2z − G

z
if G � 0∫ 2×G+1

−z
1
2zdx = 1

2 + 1
2z + G

z
if G < 0

(26)

The p.d.f. of G being the average of m = 2 uniform points from [−z, z] is given
by:

F ′
G
(G) = 1

z
·
(

1 − | G |
z

)
,−z � G � z (27)

Integration over the distribution of G now results into a conditional Success Rate
P(−1 � 2× G− rm+1 � 1) given z for m = 2, in the dimension j �= l of:

2
∫ z

0

1

z

(
1

2
+ 1

2z
− G

z

)
×
(

1 − G

z

)
dG = 1

6
+ 1

2z
(28)

The final Success Rate in a dimension j �= l is determined by the integral over all
possible values of z:∫ 1

0

(
1

6
+ 1

2z

)
dFz(z) =

∫ 1

0

(
1

6
+ 1

2z

)
dzN = 2

3
+ 1

2(N − 1)
(29)

For big values of N , this does not deviate much from the value of 2
3 which is found

for dimension l which defines the level set S(yk). The final underestimate has been
slightly improved towards

SR(n,m = 2) = 2

3

(
2

3
+ 1

2(N − 1)

)n−1

(30)
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